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ABSTRACT 

Massively parallel genetic screens have been used to map sequence-to-function 

relationships for a variety of genetic elements. However, because these ap-

proaches only interrogate short sequences, it remains challenging to perform high 

throughput (HT) assays on constructs containing combinations of sequence ele-

ments arranged across multi-kb length scales. Overcoming this barrier could ac-

celerate synthetic biology; by screening diverse gene circuit designs, “composi-

tion-to-function” mappings could be created that reveal genetic part composability 

rules and enable rapid identification of behavior-optimized variants. Here, we intro-

duce CLASSIC, a generalizable genetic screening platform that combines long- and 

short-read next-generation sequencing (NGS) modalities to quantitatively assess 

pooled libraries of DNA constructs of arbitrary length. We show that CLASSIC can 

measure expression profiles of >105 drug-inducible gene circuit designs (ranging 

from 6-9 kb) in a single experiment in human cells. Using statistical inference and 

machine learning (ML) approaches, we demonstrate that data obtained with CLAS-

SIC enables predictive modeling of an entire circuit design landscape, offering crit-

ical insight into underlying design principles. Our work shows that by expanding 

the throughput and understanding gained with each design-build-test-learn (DBTL) 

cycle, CLASSIC dramatically augments the pace and scale of synthetic biology and 

establishes an experimental basis for data-driven design of complex genetic sys-

tems. 
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MAIN TEXT 

Synthetic gene circuits are constructed by assembling DNA-encoded genetic parts 

into multi-gene programs that perform computational tasks in living cells1-3. Over the past 

two decades, gene circuits have emerged as important models for understanding native 

gene regulation4 and have been used to create powerful biotechnologies by enabling 

user-defined control over cellular behavior5-7. Despite this progress, the design of quanti-

tatively precise circuit behavior remains challenging. Regulatory interactions within a cir-

cuit must be carefully tuned, often through multiple iterative DBTL cycles, before part 

compositions that support a desired circuit behavior are identified8. Additionally, since 

genetic parts must work in close physical proximity to one another, as well as within a 

crowded intracellular environment9, incidental molecular coupling can occur between 

parts and with host cell regulatory machinery10-12. Because these context-dependent in-

teractions are difficult to predict, they can confound model-driven circuit design, further 

extending the number of DBTL cycles required to achieve a target behavior13. 

One potential strategy for increasing the pace of gene circuit engineering is to ex-

pand the number of circuits tested in each cycle by performing HT functional screens on 

pooled circuit libraries. By profiling an entire circuit design landscape in a single experi-

ment, such an approach could enable rapid identification of circuit variants with desired 

behaviors and facilitate the development of data-driven models capable of inferring con-

text-specific part function and forward predicting the behavior of novel circuit designs. HT 

screening approaches that utilize NGS as a readout14-18 have been used to generate de-

tailed sequence-to-function mappings for multiple genetic part classes, including promot-

ers19, terminators20, transcription factors (TFs)21,22, nucleic acid switches23, and 
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receptors24. However, the ability to functionally profile libraries of DNA constructs long 

enough (>1kb) to encode entire circuits is limited by current NGS technology; short-read 

platforms (e.g., Illumina) can generate high-depth data, but their read length is limited to 

DNA fragments or PCR amplicons of <500 bp25, while long-read platforms (e.g., na-

nopore) can read >1 kb but are either too expensive or too error prone26 to achieve the 

depth needed to profile larger libraries. 

Methods have emerged that permit multiplex analysis of long constructs by ap-

pending short barcode index sequences to facilitate amplicon-based readout by short-

read NGS27. However, this approach is predominantly confined to array formats where 

each construct is assembled and barcoded separately, or to nested assembly 

schemes27,28, limiting library design flexibility and assay throughput. To perform indexed 

multiplexing for long constructs at a greater scale, we devised an approach that leverages 

the strengths of both long- and short-read NGS to analyze construct libraries generated 

via pooled genetic part assembly (Fig. 1A). In our scheme, libraries are generated by 

pooled parts assemblies that incorporate semi-random barcodes; a composition-to-bar-

code index is then created using long-read (nanopore) sequencing. The library is then 

introduced into cells, binned based on expression phenotype, and analyzed by short-read 

(Illumina) amplicon sequencing to produce a barcode-to-phenotype index. A map that 

matches construct composition to phenotype can then be revealed by comparing the two 

indices. Using this technique, which we refer to as CLASSIC (combining long- and short-

range sequencing to investigate genetic complexity), it is possible to obtain high-depth 

phenotypic expression data for large libraries of DNA constructs of arbitrary length using 

standard phenotypic selection or flow sorting experiments. Further, due to the random 
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assignment of barcodes to assembled constructs, each variant in a CLASSIC library is 

associated with multiple unique barcodes that generate independent phenotypic meas-

urements, leading to greater accuracy than a one-to-one construct-to-barcode library. 

In order to configure CLASSIC to quantitatively profile libraries of gene circuits with 

diverse part combinations in human cells (Fig. 1B), we devised a custom hierarchical 

golden-gate29 cloning scheme in which library diversity is programmed through a series 

of pooled DNA assembly steps. Diversified pools of 5’, coding, and 3’ gene elements are 

first generated through assembly of input part fragments (level 0 to 1), and subsequently 

combined to create single-gene expression unit (EU) pools (level 1 to 2). EU pools are 

then combined with a plasmid-encoded barcode pool to yield multi-EU circuit libraries 

(level 2 to 3). Following nanopore sequencing and data analysis (see Methods), circuit 

libraries are genomically integrated at single copy into a HEK293T cell line harboring a 

custom “landing pad” cassette (HEK293T-LP)30,31 (see Methods). Library-integrated cells 

are then flow-sorted based on circuit expression output, followed by Illumina NGS to 

quantitate bin distributions of circuit-associated barcodes14,15 (see Methods). 

To evaluate the quantitative accuracy of this approach, we constructed and meas-

ured expression for a 384-member library in which mRuby expression was modulated by 

variable combinations of genetic parts: a set of 8 constitutively active promoters frequently 

used in mammalian genetic engineering32,33; 6 variable Kozak sequences capable of tun-

ing expression by modulating translational initiation rate34; and 8 common mammalian 

transcriptional terminator sequences20,35,36 (Fig. 2A, left). The library was cloned by com-

bining promoter, Kozak, and terminator input pools with a single mRuby ORF to generate 

a diversified EU pool, which was then combined with barcode plasmids to create the 
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construct index (Fig. 2A, right). Nanopore sequencing of the library demonstrated com-

plete, part-balanced coverage of EU design space (Fig. 2B, top) with proportional assort-

ment of unique barcodes, indicating an absence of systematic bias for both EU assembly 

and barcode indexing steps (Fig. 2B, bottom). 

Following integration into HEK293T-LP cells, the EU library was flow-sorted into 

10 bins based on mRuby expression (414,407 cells) and EU-associated barcodes were 

measured by Illumina NGS (Fig. 2C, left). We aggregated barcodes that mapped to the 

same EU to infer a mean expression and distribution for each library composition (Fig. 

2C, bottom; see Methods). To compare our NGS-derived measurements to “ground-

truth” expression values, we made direct measurements on 15 randomly sorted and clon-

ally expanded library members using flow cytometry. Geometric mean values for these 

isolates showed excellent agreement with corresponding CLASSIC-derived values 

(MAE=0.065), with residual errors mostly falling within an experimentally determined 

range of clonal expression heterogeneity (ERCH; see Methods) (Fig. 2C, right). To val-

idate the precision of CLASSIC, we compared data for separate sorting experiments of 

the same 384-member library (Fig. 2D, top) as well as independently integrated and 

sorted libraries (Fig. 2D, bottom). Both showed high correlation (R2=0.99 and 0.97, re-

spectively), demonstrating that CLASSIC is highly repeatable between both technical and 

biological replicates. 

The EU library data allowed us to systematically analyze relative contributions of 

individual parts and part categories to mRuby expression magnitude; promoters showed 

the broadest range of expression modulation, followed by Kozaks, and then terminators 

(Fig. 2E). To test whether we could use an ML model to predict expression level based 
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on part composition, we trained a random forest (RF) regression model37, which we se-

lected due to its predictive power and ability to capture non-linear relationships, as well 

as its relative interpretability over other black-box models such as neural networks. We 

used an 80:20 train:test split with part categories as features to successfully demonstrate 

that the model has high accuracy (R2=0.96) and assigns feature importance to part cate-

gories in a manner consistent with their observed effect on expression (Fig. 2F, bottom 

right). Interestingly, part compositions that were shown by the RF regression model to 

have the highest absolute error (>0.025) were determined to all contain the same termi-

nator, T8, paired with strong promoters (hEF1a1, hEF1a2, and CMV) and Kozaks, indi-

cating that pairing weak and strong transcriptional control elements can yield synergistic 

effects that confound expression level prediction (Fig. 2G). These results demonstrate 

that data gathered with CLASSIC can be used in conjunction with ML-based modeling to 

benchmark and accurately predict context-specific part function. 

We next tested whether CLASSIC could be scaled to higher throughput (>105) to 

quantitatively profile a high-dimensional gene circuit design space. For this purpose, we 

selected a small molecule drug-inducible circuit consisting of two EUs (Fig. 3A): one en-

coding a constitutively expressed synthetic Cys2-His2 zinc-finger (ZF)-based transcrip-

tion factor (synTF)38-40 with appended transcriptional activation domains (ADs), and the 

other encoding a reporter gene harboring cognate synTF binding motifs (BMs) located 

upstream of a minimal promoter driving eGFP expression38. Transcriptional induction oc-

curs upon addition of the small molecule 4-hydroxytamoxifen (4-OHT), which binds to a 

mutant version of the human estrogen receptor (ERT2)41 appended to the synTF, facili-

tating its translocation from the cytoplasm into the nucleus to activate reporter 
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transcription. As we and others have demonstrated38,42-44, identifying designs that are 

optimized for high fold-change (HFC) (Fig. 3A, right) expression can be challenging in 

eukaryotic systems; basal and induced expression levels must be respectively minimized 

and maximized through fine-tuning of both transcriptional regulatory features of the locus 

and the molecular properties of the synTF, thereby ensuring robust expression of a 

transgene exclusively in the presence of inducer. 

To create a composition-to-function map for an inducible synTF circuit, we com-

posed a 10-feature design space consisting of genetic part categories that we hypothe-

sized could be important for achieving HFC behavior. This included 4 different TAs45-47, 3 

ZF affinities38, and a set of 4 intrinsically disordered protein (IDP) domains48-50 that have 

been shown to facilitate liquid-liquid phase condensation of nuclear-localized TFs48,49. We 

also varied transcriptional regulatory features of the circuit, including 4 promoters and 4 

terminators in the synTF coding EU, as well as 3 core promoters51-53 and 2, 4, 8, or 12 

BMs in the reporter EU.. Additionally, we varied the spacing between the EUs (0, 250, or 

500 bases) along with their 5’-to-3’ orientation (Fig. 3B, left) to yield an overall design 

space of 165,888 compositions (Fig. 3B, left). This library was constructed in 3 steps by 

first assembling protein domain parts to create a level 1 synTF ORF pool, then conducting 

parallel assemblies to generate level 2 pools of synTF coding and reporter EUs, and fi-

nally combining EU and barcode pools into the level 3 destination vector (Fig. 3B, right).  

Nanopore sequencing of the pooled library yielded barcode assignments for 95.3% 

of total compositions (Figs. 3C), with a mean of 8.4 barcodes for each circuit (Fig. 3C, 

bottom left). We integrated the library into HEK293T-LP cells and sorted un-induced and 

4-OHT-induced populations (8.6 and 15.7 mil cells, respectively) separately into 8 bins 
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based on eGFP fluorescence (Fig. 3D, left). Following analysis by Illumina NGS, we 

matched a total of 121,292 (73% of design space) compositions to barcodes detected in 

both the sorted populations (mean number of barcodes per circuit=2.25) (Fig. 3C). We 

then used barcode bin distributions to compute basal, induced, and fold-change expres-

sion values for each variant. CLASSIC-derived fold-change values demonstrated excel-

lent overall agreement (MAE=0.145) (Fig. 3D, top middle) with those of random isolates 

(n=40) (Figs. 3D, bottom), and values for both basal and induced expression demon-

strated comparably high percent similarities (Fig. 3D, top right). These results confirm 

that CLASSIC retains quantitative measurement accuracy when scaled to orders-of-mag-

nitude larger and more complex libraries.  

We analyzed the distribution of CLASSIC-measured values across a 2-dimen-

sional behavior space (basal vs. induced eGFP expression), examining the relative den-

sity of compositions in 3 regions of interest: low basal (<500 AU), high induced (>70,000 

AU), and HFC expression (>25x fold-change) (Fig. 4A). We observed a higher proportion 

of library members in the low basal than in the high induced region (~4.3x), and ~50% of 

compositions exhibited fold-change values of <3x, while a smaller fraction of the library 

(~8%) fell within the HFC region. Since our data set omits 27% of our overall design 

space, the data suggest that over 3,000 HFC circuits are not represented, potentially lim-

iting our ability to understand design principles for circuits in that region. Therefore, we 

asked whether we could create a complete mapping of design space by using an ML 

model to predict the behavior of unmeasured compositions. We trained two least-squares 

boosted RF regression models with our basal and induced data sets respectively, using 

randomized proportional down-sampling (see Methods) to normalize circuit 
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representation across expression bins (Fig. 4A, middle). Evaluation of the 80:20 

train:test split indicated strong predictive power for the model, with train/test R2 values of 

0.85/0.75 for the basal and 0.84/0.81 for induced data sets. Feature importance scores 

were highest for part categories related to synTF function (AD, ZF affinity), the synTF 

expression promoter, and the reporter gene core promoter. 

Using the RF models, we predicted both basal and induced expression values for 

the 44,596 unmeasured part compositions, and also fit values for the 121,292 measured 

compositions, yielding a behavior map of our entire 165,888-member design space (Fig. 

4A, right). While a comparison between RF-modeled and CLASSIC-measured distribu-

tions revealed similar global features, we observed a high absolute model error (>2) for 

compositions measured at the periphery of behavior space (3% of variants, including 

many in the HFC region), potentially resulting from either CLASSIC measurement error 

or poor model prediction in these regions (Fig. 4A, right, inset). To validate the predictive 

power of our model, we LP-integrated unmeasured and measured compositions from 

across behavior space (Fig. 4B). Flow cytometry measurements of the resulting cell lines 

showed close agreement with both predicted values for unmeasured (MAE= 0.17) and 

measured compositions (MAE= 0.19), most notably for compositions with the highest pre-

dicted fold-change values in the design space (50-100x). Additionally, we demonstrated 

that cell lines corresponding to configurations with high-error measurements previously 

observed in the behavior space periphery showed close agreement with model predic-

tions, indicating that CLASSIC measurement outliers are accurately adjusted by the 

model (Fig. 4B, HFC circuits).  
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With a quantitatively accurate functional mapping of synTF circuit design space in-

hand, we asked whether our data set could provide insight into the design rules underlying 

circuit behavior. First, we compared the frequency of part usage between low basal, high 

induced, and HFC regions (Fig. 4C). We observed distinct part usage for compositions 

from each region, with highly asymmetric usage in specific categories, including those 

associated with the synTF protein (AD, IDP, and ZF affinity), the synTF expression pro-

moter, the number of BMs, core promoter identity, and 5’-to-3’ EU orientation. For exam-

ple, VPR, a strong AD, is used extensively in the high induced region, but is nearly absent 

amongst low basal circuits in favor of the weaker AD, p65, while intermediate-strength 

VP16 and VP64 are enriched amongst HFC circuits. By the same token, lower and me-

dium activity core promoters (miniTK and ybTATA) are excluded from high activity cir-

cuits, while low basal activity circuits exclude mCMV (high activity core promoter), and 

HFC circuits utilize a mix of ybTATA and mCMV.  

We next assessed whether part usage co-varies between categories by computing 

cross-category mutual information (MI) for each behavior space region (Fig. 4D). We saw 

“coupling” between categories in all 3 regions, with the highest degree observed in the 

HFC region. The strongest interactions were between AD and the following categories: 

ZF affinity, core promoter, and synTF expression promoter. To better understand the role 

that this apparent interdependent part usage plays in optimizing HFC circuit function, we 

performed UMAP-assisted K-means clustering54 on modeled HFC compositions using the 

7 part categories with highest MI coupling (Fig. 4E). Inspection of the resulting projection 

revealed 2 distinct clusters that were differentiated by their specific deployment of parts: 

compositions in cluster A were enriched for lower affinity synTFs fused to stronger ADs 
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(e.g., VPR), while those in cluster B favor higher affinity synTFs, medium activity ADs 

(VP16, VP64) and stronger core promoters. 

Our CLASSIC-enabled analysis of part composition patterns supports a set of de-

sign principles for programming HFC behavior that emphasizes a careful balance be-

tween minimizing basal expression while enhancing induced expression (Fig. 4F). Part 

usage in categories associated with circuit locus design favors reporter-to-coding EU ori-

entation, extended (500 bp) spacer regions, and moderate synTF expression; features 

that are also found in the low basal expression region of behavior space and thus likely 

contribute to minimizing leaky reporter expression in the absence of inducer. On the other 

hand, high BM valency, higher-activity core promoters, and preference for terminator T7, 

features also found in the high induced region, potentially maximize reporter output in the 

presence of nuclear-localized synTF. As our MI and clustering analyses demonstrated, 

usage of parts comprising the synTF protein employ two parallel molecular solutions—

matching strong activators with weak affinity (cluster A) or medium activators with strong 

affinity (cluster B)—that likely constrain specific activity of the synTF to a regime that 

minimizes background expression while still producing strong induction.     

Here, we have established the feasibility of combining long- and short-read NGS 

modalities to perform massively parallel quantitative profiling of multi-kb length-scale con-

structs in human cells. CLASSIC holds potential as a generalizable method for exploring 

the emergence of function from genetic composition across a spectrum of organizational 

scales and phylogenetic contexts, including for viruses55, bacterial operons56, and chro-

matin domains56-58. As we show in this piece, by enabling HT profiling of diverse combi-

nations of genetic parts, CLASSIC significantly expands the scope of inquiry for synthetic 
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biology projects; it reduces the time and cost required to identify behavior-optimized part 

compositions and establishes guidelines for part composability. As demonstrated by our 

identification and analysis of HFC circuit variants, the design rules revealed by CLASSIC 

may be non-intuitive and challenging to capture using biophysical modeling alone. Fur-

thermore, since CLASSIC leverages extant, broadly-accessible molecular cloning and 

experimental analysis pipelines, we anticipate it will increase the pace and scale of ge-

netic design for diverse synthetic biology applications across a range of organismal hosts, 

including the development of bioproduction strains59 and multigenic cell therapy pro-

grams5.  

Finally, we showed that data acquired using CLASSIC can be used to train ML 

models to accurately make predictions for out-of-sample and edge-case circuit behavior. 

While extensive recent work has used ML approaches to develop sequence-to-function 

models for various classes of genetic parts23,60-62 our work serves as a starting point for 

developing AI-based models of gene circuit function that use part compositions as learned 

features. While our current work has focused on mapping a design space of 105 compo-

sitions, it may be possible to create predictive models for more complex circuits with far 

more expansive design spaces by using data acquired with CLASSIC to train high capac-

ity deep-learning algorithms (e.g., transformers) which require much larger datasets than 

currently exist. Such approaches could work in black-box fashion, without the incorpora-

tion of regulatory or biophysical priors, or synergistically with existing mechanistic frame-

works to create interpretable models that provide deeper insights into genetic design. 

 

METHODS 
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Plasmid library construction 

Circuit libraries were cloned using a custom hierarchical golden gate29 assembly 

scheme, which enables rapid, modular cloning of complex gene circuits starting from in-

dividual genetic part sequences. Briefly, input DNA fragments are amplified from genomic 

or commercial DNA sources and cloned into kanamycin resistant sub-part entry vectors 

using BpiI (Thermofisher) (level 0). Sequence-verified sub-part plasmids are then used 

as inputs for assembly into carbenicillin-resistant entry vectors using BsaI-v2 HF (NEB) 

to yield genetic part plasmids (i.e., promoters, ORFs, terminators) (level 1). EUs are then 

constructed by assembling promoter, ORF, and terminator part plasmids into a kanamy-

cin-resistant entry vector using Esp3I (Thermofisher) (level 2). EUs are then combined 

into multi-unit arrays by assembling into a carbenicillin- or spectinomycin-resistant desti-

nation vectors using BpiI (Thermofisher) (level 3). 

In this system, barcode pools are incorporated into library assemblies at level 2 

and 3. Level 2 barcoded EU pools were generated by first constructing a destination vec-

tor carrying a ccdB placeholder expression cassette downstream of the BFP stop codon. 

A semi-degenerate 18 bp barcode oligo pool (IDT)63 was polymerase-extended and 

cloned in place of the ccdB cassette using BsaI-v2 (NEB) in a 20 µL golden gate reaction: 

2 min at 37 °C and 5 min at 16 °C for a number of cycles equal to 10x the number of input 

fragments, followed by a 30 min digestion step at 37 °C and subsequent sequential 15 

min denaturation steps at 65 °C and 80 °C. Resulting assemblies were purified using a 

miniprep column (Epoch Life Sciences), electroporated (BioRad) into 100 µL NEB 10-

Beta electrocompetent E. coli (NEB), and plated onto a custom 30 in x 24 in LBKan agar 

plate, yielding ~120M colonies. Plates were grown at 37 °C for 16 h, at which time 
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colonies were scraped into LBKan (20 mL), incubated for 30 min at 37 °C, and the plasmid 

library extracted via miniprep (Qiagen). For large-scale libraries level 3 barcode pools 

were generated in order to ensure a unique barcode-to-circuit mapping. To create level 3 

barcode pools, a semi-degenerate 17 bp oligo pool (IDT) was polymerase-extended and 

cloned via golden gate assembly into a SpectR destination vector carrying a placeholder 

ccdB cassette using PaqCI (NEB) following the assembly protocol above. Resulting as-

semblies were transformed into 100 µL homemade chemically competent64,65 Stbl3 E. 

coli and plated onto a 10 cm LBSpect agar plate. Plates were grown at 37 °C for 20 h to 

yield approximately 15,000 colonies, followed by colony scraping and plasmid DNA ex-

traction, as described above. 

Part pools (levels 1), EU pools (level 2) and circuit libraries (level 3) were con-

structed by combining input plasmids at 50 fmol per part category (15 µL total volume) 

using the above-described cycling protocol. Transformations varied by library size: level 

2 and 3 assemblies for the 384-member library (Fig. 2) were transformed into 100 µL of 

chemically competent E. coli (DH5a and Stbl3, cells/mL) and respectively plated on LBKan 

and LBCarb agar plates for 12-16 h (37 °C) to yield ~15,000 colonies. Colonies were 

scraped into 13 mL LBKan or LBCarb and miniprepped using a Qiagen kit. Level 1 and 2 

assemblies for the 166k-member library (Fig. 3) were respectively transformed using 100 

µL and 400 µL of chemically competent E. coli (Stbl3, cells/mL) and grown on LBCarb and 

LBKan agar plates at 37 °C for 12-16 h to yield ~5,000 and ~20,000 colonies, respectively. 

Level 3 166k-member assemblies were purified using a miniprep column (Epoch Life Sci-

ences), electroporated (BioRad) into 100 µL 10-beta electrocompetent cells (NEB), and 

then plated on 10 15 cm LBSpect agar plates for 16-20 h (37 °C) to yield ~3M colonies. 
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Long-read plasmid sequencing 

To generate indices linking assembled constructs to their associated DNA bar-

codes, we used Oxford Nanopore Technology (ONT) long-range sequencing26,66. Librar-

ies were prepared for long-read sequencing by digesting 2 µg of a level 3 plasmid library 

using Esp3I (Thermofisher) and purifying linearized fragments using a 0.5x volume of 

magnetic beads (Omega Bio-Tek) by volume. Nanopore sequencing adapters were 

added to the linearised pool using the LSK-112 genomic ligation kit (ONT) and sequenced 

using on a minION device (ONT) equipped with an R10 flow cell (FLO-MIN112). Base-

calling was performed using Guppy (ONT, super high accuracy mode) running on a GPU 

(Nvidia RTX 3090). Composition and barcode assignment was performed using WIMPY 

(what’s in my pot, y’all), a custom Matlab analysis pipeline that imports fastq files from 

Guppy, indexes the reads to a constant region in the level 3 plasmid backbone and filters 

them based on length to remove incomplete assemblies and non-library fragments. 

WIMPY then determines composition for filtered reads by identifying and assigning ge-

netic parts through a combination of general Smith-Waterman alignments67 and localized 

containment searches. This is done by splitting the reference sequence into 6-10bp “tiles” 

with a 1bp stride, after which nanopore reads are queried for the number of tiles contained 

for each part reference sequence. Reads containing >3% of tiles for a reference sequence 

are assigned while reads with more than one reference assignment are discarded. Bar-

code sequences are then determined by aligning the region downstream of the BFP EU 

to a degenerate reference sequence using a custom alignment matrix. 
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Cell culture 

HEK293T cells (ATCC® CRL-11268™) used in this study were cultured under hu-

midity control at 37 °C with 5% CO2 in media containing Dulbecco’s modified Eagle me-

dium (DMEM) with high glucose (Gibco, 12100061) supplemented with 10% Fetal Bovine 

Serum (FBS; GeminiBio, 900-108), 50 units/ml penicillin, 50 µg/ml streptomycin (Pen 

Strep; Gibco, 15070063), 2 mM L-Alanyl-L-Glutamine (Caisson labs, GLL02), referred to 

hereafter as complete DMEM. HEK293T-LP cells with and without integrated libraries 

were maintained in DMEM supplemented with 50 µg/mL Hygromycin B (Sigma, H3274) 

and 1 µg/mL Puromycin (Sigma, P8833), respectively. 

 

Single-copy library integration 

To establish a landing pad (LP) cell line, low passage HEK293T cells were co-

transfected with a linearized repair template comprising a YFP-HygR-expression cassette 

containing a BxB1 attP recognition site (pROC079) and a dual Cas9 and gRNA expres-

sion vector targeting the human AAVS1 locus68. Genomic integration events were se-

lected using 50 µg/mL Hygromycin B, and YFP+ cells were flow sorted to isolate clones 

(WOLF, NanoCellect). Clones were tested for integration competency and the presence 

of the intact LP cassette was subsequently confirmed by PCR. The resulting LP cell line 

enables efficient single-copy integration of attP-containing vectors into the genome via 

activity of the serine recombinase BxB1, which is expressed on a co-transfected plasmid. 

Cells harboring successfully integrated vectors are selected using Puromycin, yielding 

homogeneous engineered cell populations within ~10 days. 
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To integrate individual constructs, 125k cells were plated into a 24-well plate one 

day prior to transfection. The well was co-transfected with 250 ng of a level 3 vector con-

taining a construct of interest and 125 ng of BxB1 expression plasmid (Addgene #51271) 

using JetPrime (VWR). Two days after transfection, cells were passaged into complete 

DMEM containing 1 µg/mL Puromycin and selected for 10 days to achieve homogenous 

expression. Library integration was performed by co-transfecting HEK293T-LP with 250 

ng of plasmid library and 125 ng of BxB1 per 200k cells (384-member library = 1M cells 

transfected; 166k-member library = 100M cells transfected) using JetPrime. Media ex-

change was performed after 8 h and cells were expanded for an additional 40 h, split into 

five culture dishes, and grown for 6-8 days under Puromycin selection. Cells were pas-

saged 1:3 and cultured for an additional 5 days under puromycin selection, and then 

combined in complete DMEM for flow sorting (10M cells/mL). 

To determine the clonal variability within LP-integrated cell populations, we inte-

grated a constitutively expressed mCherry EU following the protocol described above. 

We then randomly sorted 23 clones from the population (WOLF, NanoCellect) and meas-

ured their mCherry expression. We calculated the MAE for this set and used this value to 

define an expected error range from clonal heterogeneity (ERCH). 

 

Flow sorting 

To prepare libraries for flow sorting, cells were lifted using TrypLE (Gibco), washed 

with PBS, and resuspended in complete DMEM (10M cells/mL). For the 384-member 

library, the mRuby expression distribution was sorted into 10 evenly log-spaced bins on 

a Sony MA900 set to purity mode. The number of cells collected for each bin was 
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proportional to the % of the mRuby distribution expressed in that bin, with a target of 

~125k cells sorted in the most populous bin [e.g., 2,252 cells were collected for bin 1 

(0.53% of library), 126,562 for bin 4 (29.78% of library)]. For the 166k-member library, 

cells were split and either grown in DMEM containing 1µM 4-OHT (Sigma Aldrich) (“in-

duced”) or without 4-OHT (“uninduced”) for 72 hrs. The eGFP expression distributions for 

both conditions were then sorted separately into 8 evenly log-spaced bins. Cells were 

sorted into bins in proportion to the relative abundance of the library in each bin, with the 

most populous bin set at 1.5M cells. For both libraries, sorted cells were plated into 96-, 

24- or 6-well plates to achieve a plating density of 10-30%, grown under puromycin se-

lection for 2 days, passaged and washed with PBS, and grown for an additional 3 days. 

Cells were then lifted using TrypLE and total RNA was extracted using the Takara RNA 

plus kit (Takara). 5 µL of mRNA was converted to cDNA (Verso, Life Technologies). 

 

Short-read (Illumina) sequencing 

To prepare sorted libraries for short-read sequencing, barcode regions were PCR 

amplified from cDNA using Phantamax polymerase (Vazyme) and custom bin-specific 

primer sets (IDT). The resulting amplicon pool was extracted from a 2% agarose gel. A 

second PCR step added Illumina sequencing adapters (i5 and i7) and sample-specific 

sequencing barcodes using Phantamax and custom primer sets (IDT), and the amplified 

product was extracted from a 2% agarose gel. Purified amplicons from each bin were 

pooled at equimolar concentrations and sequenced using an Illumina MiSeq (kit v2, 300 

cycles) or NovaSeq6000 (Sp v1.5 kit, 300 cycles) for the 384- and 166k-member libraries, 

respectively. Illumina data were analyzed using a custom analysis pipeline (Matlab). 
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Briefly, fastq files are imported and split according to their sample-specific sequencing 

barcode. Barcode sequencing data is converted to average expression for all composi-

tions/variants as follows: (1) Counts for each barcode in each sample/bin are normalized 

by the percentage of the library distribution in that bin to account for differences in read 

depth across bins. (2) A weighted average of number of reads in each bin for each bar-

code is then calculated, to assign an average expression level (using a bin → expression 

conversion table) to each barcode. (3) Barcode expression levels are then cross-refer-

enced with the Nanopore indices to assign average expression values for all barcodes 

associated with a given variant in a n-by-y cell array, where n is the number of library 

variants and y is the (variable) number of barcodes for each variant. (4) For each variant, 

a gaussian kernel density estimation is performed over the log-normalized expression 

values from all barcodes associated with each variant, using the matlab function 

ksdensity. The expression value corresponding to the kernel peak is assigned as the 

mean expression value for each variant. 

 

Random forest regression 

For the 384-member EU library, a bootstrap aggregation (bag) RF model was con-

structed using the matlab function templatetree. The promoter, Kozak and terminator 

were used as categorical input variables for each EU, with log(mRuby) expression (AU) 

as the predicted output. The data was split 80:20 (307 EUs and 77 EUs) for training and 

testing, respectively. The number of trees was chosen based on 10-fold cross validated 

RMSE loss as a function of increasing number of trees using the matlab function fit-

rensemble. The trained RF model was then validated on the test set (Fig. 2F). 
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Identification of genetic part interactions was determined by the absolute log error be-

tween predicted and observed mRuby expression.  

For the 166k-member circuit library, two independent least-squares boosted RF 

models were used to predict basal and induced expression for experimentally unmapped 

circuit members using the same matlab functions mentioned above. Data used for RF 

training were obtained by first filtering the dataset and keeping points that had 10 or more 

barcode reads. The space was then split into 8 equally log-spaced regions and, where 

available, 1000 & 200 data points were randomly sampled from each bin to create the 

training and test sets, respectively. In bins that had fewer than 1200 data points, all the 

available points were taken and randomly split into 80:20 for training and testing. The 

inputs to the model were the 10 categorical variables representing the parameters tuned 

in the library (e.g., SynTF affinity, #BM etc.), while the output was the log(eGFP) expres-

sion (AU) for basal or induced expression values. Following hyperparameter optimization 

for number of trees, least squares boosting algorithm learn rate, and maximum decisions 

splits, model structure and performance were as follows: basal, 15 trees, max number of 

splits=31 max number of splits, learn rate 0.263, R2train=0.85, R2test=0.75 and; induced, 75 

trees, max number of splits=41, learn rate=0.1586, R2train=0.84, R2test=0.81. 

 

Mutual information calculation 

For a given pair of features in a region of design space, mutual information was 

computed using the following formula: 

�𝑝𝑝
𝑥𝑥,𝑦𝑦

(𝑥𝑥,𝑦𝑦)𝑙𝑙𝑙𝑙𝑙𝑙2
𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦) 
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where x and y are 2 different features of the library, and p(x, y) represents the joint fre-

quency for specific x and y combinations divided by the total number of points in the 

dataset. p(x) and p(y) represent the fractional frequency of the corresponding parts by 

themselves. 

 

UMAP clustering 

For UMAP dimensional reduction the clusterevaluation function in Matlab was 

used to carry out a gap test to identify the optimal number of clusters in the data, followed 

by K-means clustering to identify clusters. 
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Figure 1. Using CLASSIC to systematically map the design space of complex ge-

netic programs. (A) Overview of CLASSIC. Pooled assembly of genetic parts with DNA 

barcode sequences yields libraries of barcode-indexed constructs of arbitrary length and 

complexity. Long-read nanopore sequencing is used to create an index matching con-

struct composition to an associated barcode. In parallel, libraries introduced into cells 

undergo sorting or selection to bin expression phenotypes. Barcode amplicons generated 

for each bin are subjected to short-read NGS to quantify expression phenotype, which is 

then mapped to construct composition via barcode indexes. (B) Application of CLASSIC 

to profile a synthetic gene circuit design space. Hierarchical golden gate assembly is used 

to compose libraries of multi-EU circuits with combinatorially varied part compositions and 

circuit designs. Sequence fragment pools for different parts categories from level 0 are 

combined to yield level 1 pools of promoters, open reading frames (ORF), and terminators 

(term.), which are then combined to yield level 2 EUs (square brackets: fragment/part 

pools). Barcode pools are combined with EU pools to create indexed multi-EU circuit li-

braries (level 3) that are integrated into HEK293T-LP cells placed at the AAVS1 locus in 

chromosome 19 via expression of the BxB1 recombinase (top right). Library analysis by 

a combination of nanopore and flow-seq yields composition-to-function mapping. 
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Figure 2. CLASSIC can quantitatively profile diverse compositions of genetic parts. 

(A) EU library design space. Left: the EU library comprises combinations of parts from 3 

categories (promoters, Kozak sequences, and terminators). Right: Part pools are assem-

bled (step 1) with an mRuby ORF to generate a 384-member EU pool, which is combined 

with a barcoded-BFP EU pool to generate the indexed EU library. (B) EU library assembly 

and indexing balance. Oxford nanopore sequencing was performed on the assembled 

library. Data were analyzed to assess library composition count (top) and composi-

tion/barcode balance [reads per composition (light grey), unique barcodes per composi-

tion (dark grey); data plotted in rank order of reads per composition] (bottom). (C) EU 

library expression quantification. Top left: the library was flow sorted into 10 equally log-

spaced bins [empty HEK293T cells (grey histogram), library (pink histogram)]. Top right: 

residual for FACS-measured geometric mean fluorescence values for sorting-isolated 

clones (n=15) plotted against CLASSIC-derived values [ERCH (grey band), error range 

from clonal heterogeneity (see materials and methods)]; black dots, clonal isolates. Bot-

tom: Representative data from 4 clonal isolates (pink solid) are shown with corresponding 

CLASSIC-computed distributions [kernel density (black line) calculated from normalized 

barcode read count (grey vertical bars)]; MAE, mean absolute error; AU, arbitrary fluores-

cence units. (D) CLASSIC precision. Correlation of CLASSIC-computed EU expression 

between technical replicate (top) and biological replicate (bottom) experiments. (E) Influ-

ence of part identity on expression. Violin plots of each part-specific distribution, ordered 

from strongest to weakest. Dotted line, HEK293T background expression mean. (F) RF 

analysis of EU behavior space. Left: RF modeled values plotted against CLASSIC meas-

urements. Grey, training data; purple, test data. Top right: 10-fold cross-validated error (y 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.16.532704doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.16.532704


 26 

axis) vs number of learning cycles (x axis). CV, cross-validation; MSE, mean squared 

error. Bottom right: feature importance scores for each part category. (G) Analysis of part 

interference. Left: error (RF predicted – CLASSIC-observed) is plotted for all composi-

tions associated with each promoter. White lines, mean values; red dots, >0.025 outliers.  

Right: part configurations for outliers. Red shaded area highlights commonality of termi-

nator T8. 
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Figure 3. Using CLASSIC to profile a synthetic gene circuit design landscape. A)  

Inducible synTF circuit diagram. Left: The circuit contains two EUs: one codes for the 

synTF and the other is an eGFP reporter. Without inducer, the synTF localizes to the 

cytoplasm. Upon addition of 4-OHT (input), the synTF translocates into the nucleus to 

bind to and activate reporter eGFP expression (output). Right: Expression fold change is 

the ratio of expression levels in the presence or absence of inducer. (B) synTF circuit 

design space. Left: SynTF diversity (arranged N-to-C term): of 4 ADs, 4 IDPs, and 3 ZF 

affinities. synTF coding EU diversity: 4 constitutive promoters, 4 terminators. Reporter EU 

diversity: 4 BM number variants, 3 minimal core promoters. This unit contains a constant 

terminator. Both EUs have 3’ spacing sequences of 0bp, 250bp or 500bp downstream. 

Right: EUs assembled from input parts and combined in 2 different 5’-to-3’ orientations, 

to generate a combinatorial diversity of 165,888 possible circuit variants. (C) Balance of 

circuit library assembly and indexing. Left: data for ~121k out of 166k variants (73%) were 

recovered by CLASSIC; compositions, light grey; barcodes, dark grey. Right: Nanopore 

sequencing data of the library were analyzed to assess library composition count (top) 

and composition/barcode balance [reads per composition (light grey), unique barcodes 

per composition (dark grey); data plotted in rank order of reads per composition] (bottom). 

(D) Circuit library sorting and measurement. Top right: eGFP expression of circuit library 

in presence (solid green) and absence (dotted green line) of 4-OHT (top, center) is shown, 

along with boundaries of flow sorting bins (vertical grey dotted lines); grey histogram, 

empty HEK293T-LP cells. Top middle: Fold-change values for 40 clonal isolates plotted 

against CLASSIC-derived values. Black dots, isolates displayed at the bottom of the 

panel; MAE, mean average error; grey region, ERCH, error range of clonal heterogeneity 
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AU, arbitrary fluorescence units. Top right: % similarity between basal and induced values 

for CLASSIC and isolates. Bottom: Flow data from 4 isolates (green dotted line, unin-

duced; green solid, induced) are shown with corresponding CLASSIC-computed distribu-

tions [kernel density (black line) calculated from normalized barcode read count (grey 

vertical bars)]. Parts combinations corresponding to each index are shown. 
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Figure 4. Analysis of CLASSIC library behavior space reveals gene circuit design 

rules. (A) ML model of inducible synTF circuit behavior space. Left: Basal and induced 

CLASSIC measurements were plotted as a contour plot [contours, light to dark: 97.5%, 

90%, 70%, 50% of total measurements]. Highlighted regions bounded by dotted lines: 

low basal (<500 AU), purple arrow; high induction (>70k AU) blue; high fold change (HFC) 

(>25x, green). Values in the plot indicate the number of compositions in each region. 

Middle: RF of with 80:20 train:test split for basal and induced CLASSIC data [training data 

(grey) plotted against test data (purple, basal; blue, induced). Right: Contour plot of RF 

modeled design space for unmeasured compositions predicted by the RF model, meas-

ured circuits, and combined data (complete design space). Inset: average model error 

between the CLASSIC-derived measurements and RF-computed values. (B) Experimen-

tally validating ML prediction of circuit function. Fold-change values for cell lines from 

unmeasured configurations (red) and measured configurations (green) were plotted 

against CLASSIC-derived values. Black dots, isolates displayed at the periphery of the 

panel; MAE, mean average error; grey region, ERCH, error range of clonal heterogeneity. 

AU, arbitrary fluorescence units. (C) Genetic part usage in highlighted regions of behavior 

space. Part fold enrichment is calculated by dividing observed part occurrence by ex-

pected part occurrence from a balanced library. Red text, categories with high asymmetry 

used for cluster analysis. (D) Mutual information between part categories in different re-

gions of behavior space. MI between part categories is denoted by red line thickness. (E) 

Clustering analysis of HFC circuit designs. High asymmetry part categories were chosen 

for UMAP dimensional reduction followed by K-means clustering. Bar plots denote num-

ber of part occurrences within each cluster. (F) Strategies for engineering synTF circuits 
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with high fold change behavior involve combining design elements that maximize induc-

tion while limiting leaky basal expression. 
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